

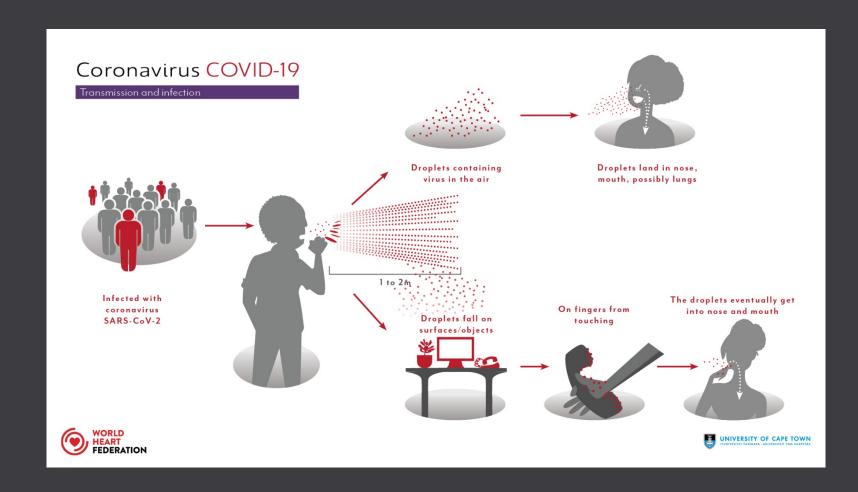

Our world has fundamentally changed......or has it?

Event	Date	Death Toll	Location	Disease
1915 Encephalitis lethargica pandemic	1915–1926	1,500,000	Worldwide	Encephalitis lethargica
1918 flu pandemic	1918–1920	17,000,000	Worldwide (up to 100million)	Spanish flu virus (H1N1)
1918–1922 Russia typhus epidemic	1918–1922	2,500,000	Russia	Typhus
1947 Egypt cholera epidemic	1947	10,277	Egypt	Cholera
Poliomyelitis Epidemic	1948	8,005	United States	Poliomyelitis
1957–1958 influenza pandemic	1957–1958	1,000,000	Worldwide (1-4 million actual deaths)	Influenza A virus subtype H2N2
1960–1962 Ethiopia yellow fever epidemic	1960–1962	30,000	Ethiopia	Yellow fever
Seventh cholera pandemic	1961–1975	155,000	Worldwide	Cholera (El Tor strain)
Smallpox Worldwide	1877–1977	500,000,000	Worldwide	Smallpox
Hong Kong flu	1968–1970	1,000,000	Worldwide (1-4 million actual deaths)	Influenza A virus subtype H3N2
1974 smallpox epidemic of India	1974	15,000	India	Smallpox
HIV/AIDS pandemic	1981–present	43,800,000	Worldwide	HIV/AIDS
1984 Western Sahara plague	1984	64	Western Sahara	Bubonic plague
1986 Oju yellow fever epidemic	1986	5,600	Oju, Nigeria	Yellow fever
1987 Mali yellow fever epidemic	1987	145	Mali	Yellow fever
1991 Bangladesh cholera epidemic	1991	10,415	Bangladesh	Cholera
1996 West Africa meningitus epidemic	1996	10,000	West Africa	Meningitis
Queensland 2009 dengue outbreak	2009	503	Queensland, Australia	Dengue fever
2009 swine flu pandemic	2009–2010	575,400	Worldwide	Influenza A virus subtype H1N1
2010s Haiti cholera outbreak	2010–2019	10,075	Haiti	Cholera (strain serogroup O1, serotype Ogawa)
Western African Ebola virus epidemic	2013–2016	11,323	Worldwide (centred in Africa)	Ebola virus disease
2017–18 United States flu season	2017–2018	95,000	United States	Seasonal influenza
2019–2020 New Zealand measles	2019–present	2	New Zealand	Measles
2019 Samoa measles outbreak	2019–present	83	Samoa	Measles
COVID-19 pandemic	2019–present	4,279,366	Worldwide (as of 18 May 2020)	COVID-19 / SARS-CoV-2

^{*}Notable disease events above 10K deaths since 1915 + recent local events

Signify

Why does air & surface disinfection matter?

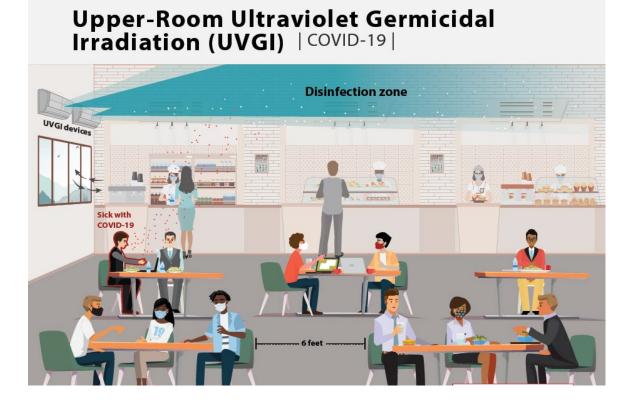


Channels of transmission

The virus spreads mainly from personto-person transmission in 3 basic modes:

- Direct air-borne transmission between people
- Indirect surface-borne transmission via contaminated surfaces
- Indirect air-borne transmission through air flows

This is where UV-C can offer enhanced disinfection solutions



CDC Guidelines on Upper-Air UVC

Considerations for Use of Upper-Room UVGI

- The most important locations for UVGI are high-risk indoor settings. These include:
 - Areas with an increased likelihood of sick people (for example, school nurse's office, hospital waiting room).
 - Crowded spaces, particularly when the health status of occupants is unknown (for example, courtrooms, lobbies, homeless shelter sleeping areas).
 - Spaces where people must take off masks to eat or drink (for example, school/institutional cafeterias, restaurants, break rooms).
 - Areas where it is difficult to stay at least 6 feet apart from others.

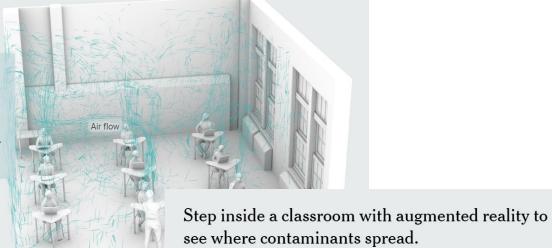
Wall Street Journal Video

3/18/2021 1:10PM

How Risky Is the Classroom With Covid-19 Controls in Place?

A year into the coronavirus pandemic, many schools are only partially open for fear they could fuel the spread of the virus. Experts explain what the actual risks are for spreading Covid-19 in schools and how proper controls can change that equation. Illustration: Preston Jessee for The Wall Street Journal

B5BE-C85B84F9FB2C.html



New York Times Video Simulation

The C.D.C. is urging communities to reopen schools as quickly as possible, but parents and teachers have raised questions about the quality of ventilation available in public school classrooms to protect against the coronavirus.

We worked with a leading engineering firm and experts specializing in buildings systems to better understand the simple steps schools can take to reduce exposure in the classroom.

The students are wearing masks, but their breath still circulates and mixes around the room. About 3 percent of the air each person in this room breathes was exhaled by other people.

Article Link:

https://www.nytimes.com/inter active/2021/02/26/science/reop en-schools-safetyventilation.html?searchResultPo sition=2

Key Takeaways/Observations:

 Simulations continue to show how contaminated air flows in the upper air regions of a space

To experience this in your space, you will need the Instagram app.

To view on Instagram, open the camera on your device and point to the QR tag below.

Why UV-C
vs.
other disinfection solutions

New Research Article:

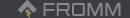
Air Disinfection for Airborne Infection Control with a Focus on COVID-19: Why Germicidal UV is Essential†

Edward A. Nardell*

Division of Global Health Equity, Brigham & Women's Hospital, Harvard Medical School, Boston, MA

Received 7 January 2021, accepted 16 March 2021, DOI: 10.1111/php.13421

Excerpt from article Abstract


- "Only two established room-based technologies are available to supplement mechanical ventilation: portable room air cleaners and upper room germicidal UV air disinfection."
- "SARS-CoV-2 is highly susceptible to GUV, an 80-year-old technology that has been shown to safely, quietly, effectively and economically produce the equivalent of 10 to 20 or more air changes per hour under real life conditions."

Excerpt from article summary

"Quantitatively, where applicable, no other technology approaches the equivalent air changes per hour that can be produced by upper room UV, silently, safely and costeffectively."

^{*}Corresponding author email: enardell@gmail.com (Edward A. Nardell)

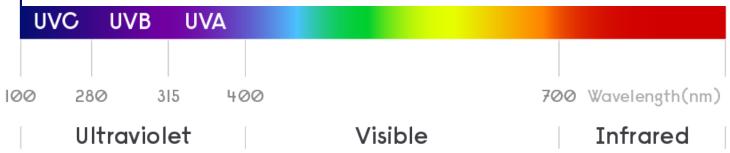
[†]This article is part of a Special Issue dedicated to the topics of Germicidal Photobiology and Infection Control
© 2021 American Society for Photobiology

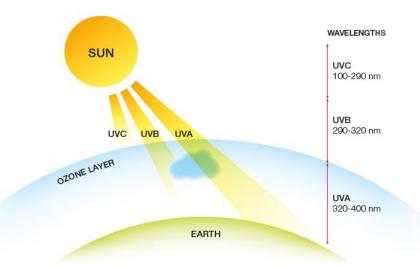
(s) ignify

What is UV-C & how does it work?

What is UV-C?

UV stands for Ultraviolet. It is a wavelength of light that is invisible to human eyes. UV light can be subdivided into three categories:




UV-B 280 to 315 nm

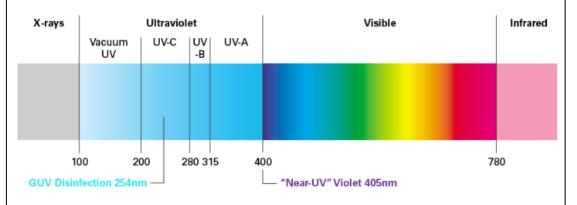
For medical use (i.e. phototherapy to treat skin conditions, including psoriasis)

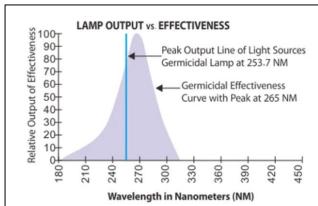
UV-A 315 to 400 nm

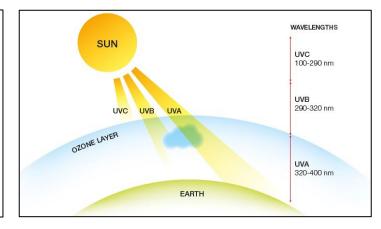
For use with curing, suntanning, and insect traps

Types of commercially available UV Light

(Far – UV)


- 222nm
- Not visible light
- Kills bacteria
- Virus effect being tested
- Does not kill Mold, Fungi
- Exposure time is long
- Lower exposure and ozone risks
- Technology Infancy
- UL safety requirements same as 254nm


Germicidal UV-C (GUV)

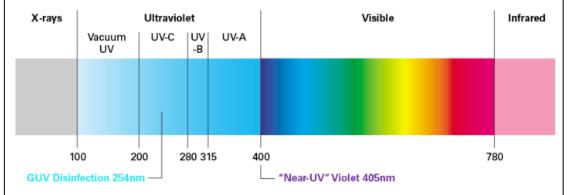

- 254nm
- Not visible light
- Kills hacteria & Inactivates viruses
- Kills mold and fungi
- Exposure time is short
- Highly effective
- Proven technology
- Exposure risk well documented

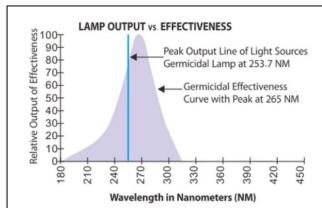
(Near – UV)

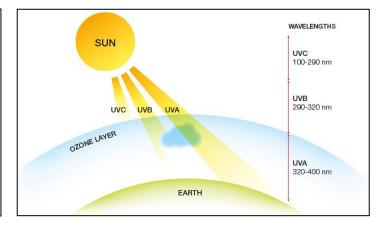
- 405 nm
- Visible light
- Limited virus effect
- Impacts on Mold and Fungi still being researched
- Slows bacteria growth
- Requires long exposure time

Types of commercially available UV Light

(Far – UV)


- 222nm
- Not visible light
- Kills bacteria
- Virus effect being tested
- Does not kill Mold, Fungi
- Exposure time is long
- Lower exposure and ozone risks
- Technology Infancy
- UL safety reg's updated, limited exposure


Germicidal UV-C (GUV)

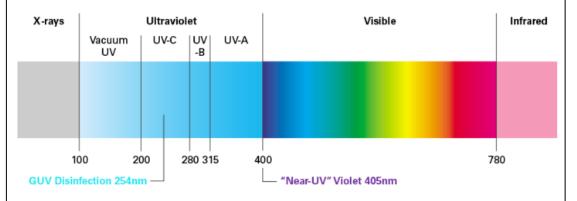

- 254nm
- Not visible light
- Kills hacteria & Inactivates viruses
- Kills mold and fungi
- Exposure time is short
- Highly effective
- Proven technology
- Exposure risk well documented

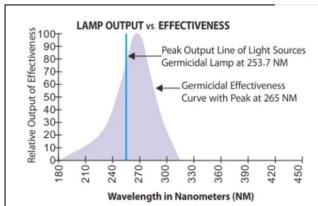
(Near – UV)

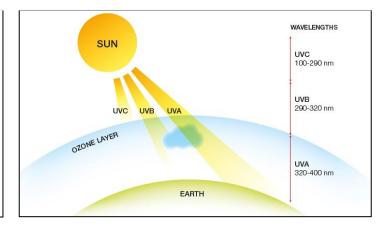
- 405 nm
- Visible light
- Limited virus effect
- Impacts on Mold and Fungi still being researched
- Slows bacteria growth
- Requires long exposure time

Types of commercially available UV Light

(Far – UV)

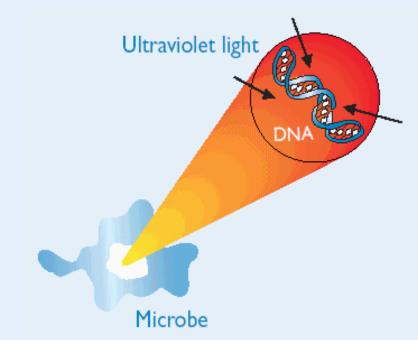

- 222nm
- Not visible light
- Kills bacteria
- Virus effect being tested
- Does not kill Mold, Fungi
- Exposure time is long
- Lower exposure and ozone risks
- Technology Infancy
- UL safety requirements same as 254nm


Germicidal UV-C (GUV)

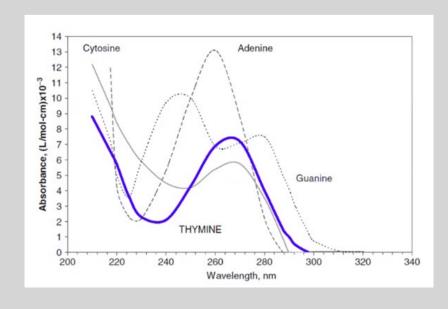

- 254nm
- Not visible light
- Kills bacteria & Inactivates viruses
- Kills mold and fungi
- Exposure time is short
- Highly effective
- Proven technology
- Exposure risk well documented

Near – UV)

- 405 nm
- Visible light
- Limited virus effect
- Impacts on Mold and Fungi still being researched
- Slows bacteria growth
- Requires long exposure time

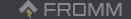


♠ FROM


How does UV-C work?

- UV-C can breakdown the DNA and RNA of bacteria, viruses and spores
 leaving them harmless.
- To date, there are no known micro-organism that are resistant to UVC.1
- The peak output of traditional technology germicidal UV-C products is (254nm) which is close (80-85%) to the maximum effectiveness of UV-C (260-265nm)

Used extensively by scientists for over 40 years², UV-C is a known disinfectant for air, surfaces and water



Effectiveness of UV-C on DNA building blocks

¹ Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae Revised, updated and expanded by Adel Haji Malayeri, Madjid Mohseni, Bill Cairns and James R. Bolton. With earlier contributions by Gabriel Chevrefils (2006) and Eric Caron (2006) With peer review by Benoit Barbeau, Harold Wright (1999) and Karl G. Linden

²EPA Report, "Building Retrofits for Increased Protection Against Airborne Chemical and Biological Releases" Pg. 56

(s) ignify

Disinfection Products

Products

Air
UVC upper air Ceiling mount

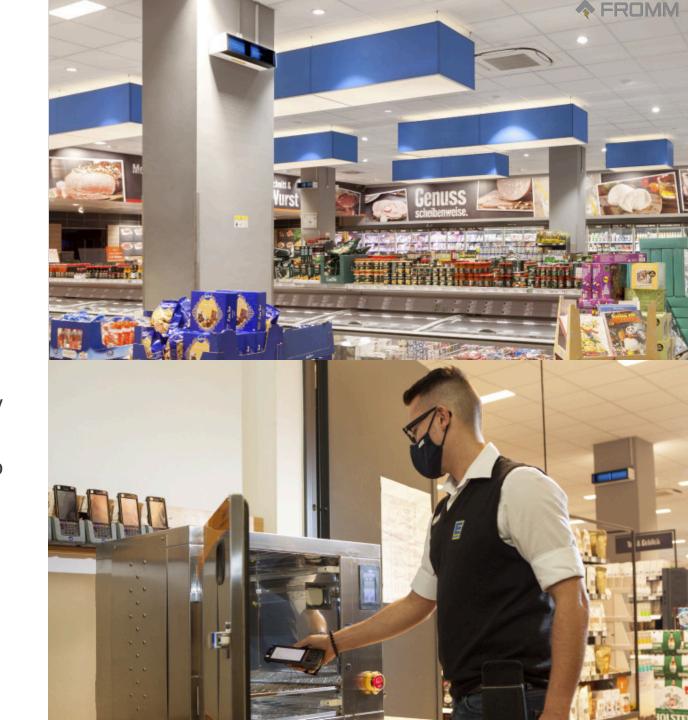
UVC upper air wall mount

Equipment UV-C Chambers

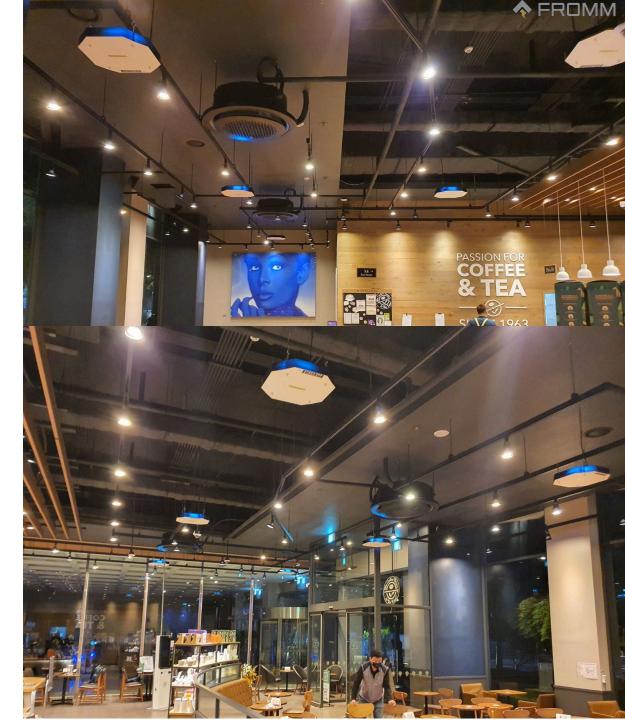
Air Disinfection

Upper Air Luminaires

Testimonials


"We are aware that UV-C Wavelengths attack the microorganisms at molecular level, inactivating and destroying the contaminants. Therefore, this is part of our overall strategy. We have installed in our office upper-room disinfection luminaires, which are used because of the surrounding people working within the facility, installed at a height that prevents exposure to the UV-C light source."

- Stephen Burke, Construction Director, Forte Partners


EDEKA Clausen Hamburg, Germany

- With the Coronavirus pandemic present, shopping brings some challenges. The last thing you would need, is to worry about your health and safety during shopping.
- The need for disinfection options in particular for indoor air, but also for surfaces and equipment has increased significantly.
- A challenge that was faced by EDEKA Clausen supermarket in Hamburg to provide additional safety of customers and employees.
- EDEKA Clausen is the first supermarket in Germany to deliver an additional layer of protection with 31 Philips UV-C disinfection upper air luminaires installed to cover 1,315.70m2 large branch in Hamburg.
- As the upper air devices are equipped with shielding and optics to prevent exposure to UV-C radiation, employees can safely fill the shelves, and customers do their grocery shopping.

Coffee Beans - Korea

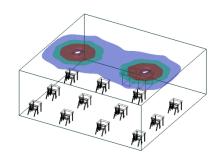
- With the Coronavirus pandemic present, outing brings its own challenges. The last thing you would need, is to worry about your health and safety during going out for wine and dine.
- The need for disinfection options in particular for indoor air, but also for surfaces and equipment has increased significantly.
- A challenge that was faced by Coffee Beans Retail outlets in Korea to provide additional safety of customers and employees.
- Coffee Beans has 600 retail stores in Korea and plans to provide an additional layer of protection with Philips UV-C disinfection upper air luminaires installed in their first pilot store.
- As the upper air devices are equipped with shielding and optics to prevent exposure to UV-C radiation, employees can safely fill the shelves, and customers do enjoy their coffee with a piece of mind.

Upper Air Disinfection

(Commercially available off-the-shelf, following installation safety guidelines & commissioning protocols)

Close **Proximity**

Areas



2x2 Ceiling Mount

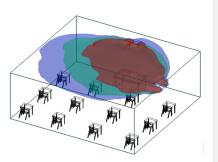
General Design Guidelines*

- Minimum 9' Ceiling Height
- Minimum 12' distance between fixtures
- Minimum 6' distance between fixture and wall
- Estimate of minimum 250sqft area of disinfection per fixture

2x2 Ceiling Mount

Product Specification:

- Available 2x2 Grid ceiling mount housing
- -4 lamp 9 W PL-S Philips TUV
- -White or black polyester powder coated steel housing


(S) ignify

Louvered Wall Mount

General Design Guidelines*

- Minimum 9'6" ceiling
- Minimum 8' 3" mounting height to bottom of fixture
- Minimum spacing between fixtures is 8'
- Recommended to not have obstructions or walls less than 20' in front of fixture
- Estimate of minimum 325sqft area of disinfection per fixture

Louvered Wall Mount

Product Specification:

- Available 22" white polyester powder coated housing (black optional)
- 1 lamp 20 W T5 Philips TUV
- Specular aluminum reflector
- · Wall mounting plate provided

Upper Air Applications

Upper air disinfection for large areas and spaces where freestanding units are not viable

Restrooms

Athletic Facilities

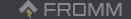
Gymnasiums

Hallways

Cafeteria

Library

Break-out Rooms



Signify

Surface Disinfection

Direct Luminaires

Spolem Stores Ozorków, Poland

- To reduce the risk of spreading the virus, UV-C disinfection upper air devices were mounted on the ceilings. These continually emit UV-C radiation in the upper part of the store while still allowing customers to carry on shopping during their operation.
- To disinfect surfaces, UV-C battens were installed, which are automatically activated at night when no one is present. The whole installation was carried out the highest standards and UV-C radiation is measured to ensure maximum efficacy and safety
- UV-C disinfection devices reduce the risk of contamination to customers and employees of "Społem" stores and increase the safety and comfort of shopping. We believe the investment in Philips UV-C disinfection devices confirms the quality and the credibility of our brand - especially in such a difficult situation as the coronavirus pandemic. "Agnieszka Derlecka, President of "Społem" stores, Ozorków

Direct Luminaires Surface Disinfection

(Controls & commissioning services required to meet UL guidelines)

ALKCO

Germicidal UV High Bay

ALKCO

Germicidal UV **Strip**

Surfaces

Surface disinfection as part of a multi-step mitigation approach to reducing bacterial and viral transmissions

Restrooms

Athletic Facilities (lockeroom)


Break-out Rooms

Equipment

Shared Equipment
Disinfection Chambers

Once BioShift® germicidal chamber — Shared Equipment Disinfection

Small chamber

- 254 nm UV-C
- 20W (4 UV-C lamps)
- 530 L x 495 W x 495 H mm
- 50 kg
- ideal for daily disinfection of pathogens on everyday items

Large chamber

- 254 nm UV-C
- 40W (18 UV-C lamps)
- 1119 L x 535 W x 1695 H mm
- 180 kg
- Ideal for facilities or entrances with a higher volume of people or devices

- Effective
- Easy-to-use
- Properly sealed
 - Immediate
 - Durable

Deactivates a wide range of pathogens in a recommended time of 5 minutes.

Application areas:

All indoor applications:

Faculty, Library, Athletic, and Laboratory Equipment

Signify

Usage Guidelines

UL, Commissioning, & Controls

UL Certification Compliance Ensuring a safe application

Underwriters Laboratories has developed a set of standards solely for the purpose of establishing requirements for the safe and effective installation and operation of UV-C luminaires and solutions.

UL 1598 Safety Certified Germicidal UV system

Compliance on measurement technique to ensure safety

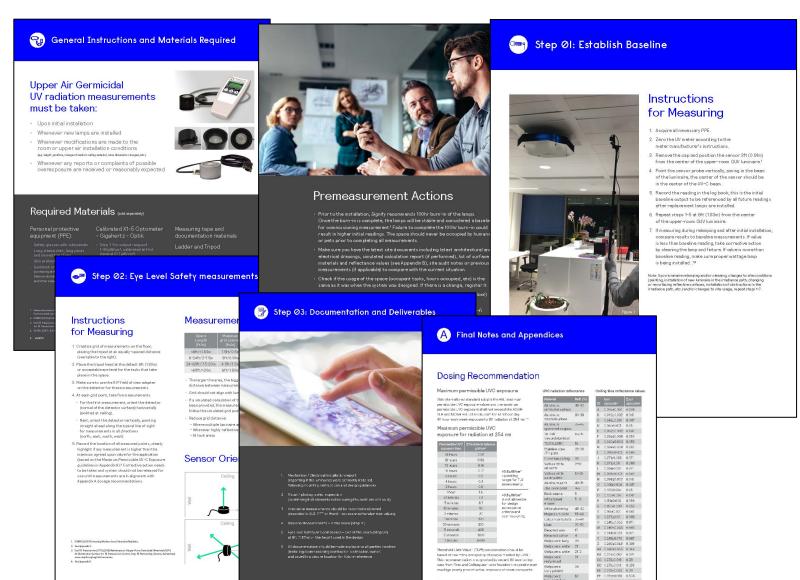
- ✓ Measurement in accordance with IEC 62471
- Defining the risk group as per IEC TR 62471-2
- ✓ Guidance on minimum mounting height
- Peak emission value irradiance measurement to assist installers with site planning.
- ✓ Requisite labeling and installation instructions.
- Guidance instructions on installation, operation, maintenance, and personal protective equipment for service personal in line with UL regulations
- ✓ Specify installer site planning responsibilities.

Testing requirement: The equipment shall be offset from its intended mounting surface angle by 1 degrees whenever such an offset is likely to produce a more severe test result

Upper Air – Installation Commissioning Guide

General Instructions and Materials Required

Step 01: Establish Baseline

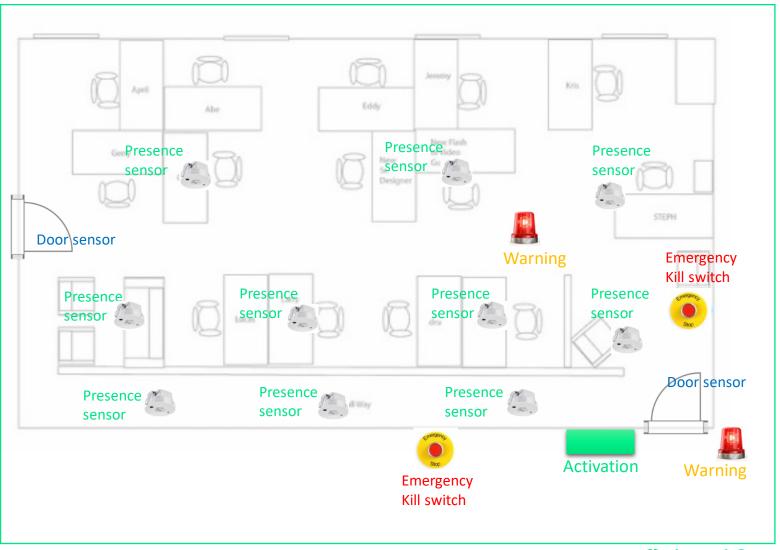

Step 02: Eye Level Safetymeasurements

Step 03:
Documentation and
Deliverables

Final Notes and Appendices

0.362+0.03E 0.04

Direct UV-C Luminaire Controls to Ensure Occupant Safety



UV-C controls are fitted per room to prevent usage with people present

The responsibility to switch the UV-C lighting ON lies with an authorized operator.

Key UV-C Control Components:

- Authorized Activation Panel
 - Luminaire on/off control
 - · Protection checks
 - Status feedback
- Presence sensor: Independent mount
- Door sensor
- Emergency kill switch
- Activation warning (light or sound)

Signify

